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PROC R ARRA LLEL DATA PROCESSING METHOD

Technical Field

This invention relates to computers. In particular the invention relates to
massively parallel computers having processor arrays and methods for using arrays
of processors to solve problems. Specific embodiments of the invention are
particularly useful for image processing.

Background
Image processing is both computationally intensive and data intensive. By

way of example, using an MPEG (“Motion Picture Experts Group”) image
compression algorithm to compress a 20 Megabytes-per-second television signal in
real time may require on the order of 200 billion arithmetic operations per second.
The goal of providing cost effective computer systems capable of providing the
extremely high throughput required for image processing and similar tasks has so
far eluded the computer indu'stry.

One way to achieve higher throughput in computer image processing -
systems is to use a higher speed.processor. The processor could be any of several
types commonly in use, such as RISC (reduced instruction set computer), CISC
(complex instruction set computer), DSP (digital signal processor), or VLIW (very
long instruction word). A basic problem with applying a high speed processor to
data intensive applications such as image processing is that the processor typically
spends a significant amount of time moving data to and from the memory. Further,
when a single processor is used, the inherently parallel nature of many image
processing algorithms must be broken down by the programmer into a serial
program which works with one or at most a few pixels at a time.

Another common approach to achieving real-time performance in difficult
image processing applications is to build custom hardware to perform the image
processing. To do so, a problem is typically broken down into its main functional
steps, and each step is implemented by different hardware sub systems. The
hardware may be provided on an application specific integrated circuit (ASIC) or
the like. Such hardware-based solutions do not typically scale up very well to larger
image sizes, nor are they readily applicable to other problems.

A further way to achieve higher throughput is to divide the image processing
task between many processor elements (PEs). For inherently two-dimensional (2D)
problems, such as image processing, which deal with 2-dimensional arrays of data

. elements, such as pixels, it is natural to arrange a number of processing elements so
that each processing element is logically arranged at a node of a 2-dimensional grid.
Local connections are provided between neighbouring processors. A natural way to
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implement many 2D problems is to assign a single processor element to each data
element. That is, to provide processor elements arranged at nodes of a mesh which
has the same dimensions as the array of data elements that it manipulates. There are
many examples of the use of computer processor' arrays for solving image
processing and other computational problems.

An architecture that assigns only a few data elements per processor element
is termed “fine-grained”. In contrast, a coarse grained architecture has many data
elements assigned to each processor element. M. J. Flynn Very High Speed
Computing Systems, Proceedings of the IEEE, Vol. 54, No. 12, pp. 1901-1909
(1966) categorized parallel processing computing systems into three categories:
SIMD (single instruction stream, multiple data streams), MIMD (multiple
instruction streams, multiple data streams) and MISD (multiple instruction streams,
single data stream). In a SIMD system, the same instruction is broadcast to all
processor elements. Each processor element has its own set of registers along with
some means for it to receive unique data (such as a data value for a particular pixel
in an image). In SIMD systems each individual processor element can be simple
because it does not require a separate program counter or logic for fetching
instructions from memory. Consequently, SIMD arrays can be well suited for fine-
grained architectures. :

In MIMD architectures every processor element has its own program store
and can operate independently of other processor elements. A MIMD processor
array may also be termed a “multi-computer”, because each processor element is
full computer in its own right. MIMD architectures are not as well suited to fine-
grained problems such as image processing because each processor element in a
MIMD array is more complicated than, and requires larger circuits than, its
counterpart in a SIMD array. Further, inter-processor contention for shared
resources is an issue because the processor elements in a MIMD array operate
independently.

In MISD architectures a single stream of data is passed along a chain of
processors with a different operation performed at each step in the chain. Systems
which implement MISD architectures are more commoaly referred to as systolic
arrays, and are well suited to signal processing and video scan line processing, but
not well suited to problems such as image compression that require two-dimensional
operations.

In a SIMD array it is difficult to implement algorithms where one group of
processor elements is required to operate differently from another group of
processor elements. In some SIMD architectures individual processor elements can
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conditionally skip instructions (SIMD architectures without this capability can
achieve the effect of condition statements through more complicated mathematical
expressions).

Models for studying and modelling parallel computing have been proposed
in which there are multiple instruction streams each of which is provided to a
specific set of processing elements and multiple data streams. Such models are
termed MSIMD models. Typically each instruction stream is associated with a
specific data stream.

A key problem with using any parallel array of processors is to program the
processors in the array in such a way that the parallelism is well utilized (i.e. so that
a good proportion of the processors are kept busy most of the time). As a simple
example, consider the following conditional branch structure, coded in the C
programming language. Such a conditional sequence might occur where the
behaviour of some processor elements (e.g. processor elements processing pixels
which are located at the boundary of an image) needs to be different from all other
processor elements,

if (xr0 == 0)
{
/* Sequence A for non-boundary pixels*/

}

else

{
/* Sequence B for boundary pixels*/

}

In this example, 10 is the symbolic name for a register in each processor
element. The processor element executes either sequence A or sequence B
depending on the state of its 0 register. It can be appreciated that if sequence A and
sequence B are equally long then each processor element will be utilized only 50%
of the time because it will have to skip one or other of the conditional branches.

The processor elements all receive the same instruction stream. While a processor
element is skipping instructions it is not performing useful work.

A table lookup operation is another example of inefficient utilization of a
parallel array. Consider a table lookup operation wherein each processor element is
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required to retrieve an element from a table based on the contents of a register.
Table lookup operations of this type are used commonly, for example, to implement
such tasks as colour correction, contrast enhancement, or texture mapping.
Typically the table is much larger than the memory available at each processor
element. Even if there were sufficient data storage at each processor element it
would be a poor use of memory resources to have a copy of the same table in the
memory of every processor element. Since each processor element requires access
to a specific element of the table either the table will be stored in an external
memory the entire table must be broadcast to every processor element. If the table
is stored in an external memory then there will be contention problems caused by a
large number of processor elements attempting simultaneously to access the table. If
the table is broadcast to all of the processor elements then each processor element
waits until the appropriate table value is broadcast, and stores only this value. It
ignores all other values. It can be appreciated that processor utilization is very low
during such look-up operations. Even if the contents of a table are broadcast to
processor elements in a number of data streams each processing element must do
significant work to obtain the one value from the table that it requires. This
increases power consumption of the processor array.

An important characteristic of massively parallel architectures is the way in
which processor elements are interconnected with one another. Various
interconnection schemes are known. For example, U.S. patent No, 4,314,349
discloses a typical architecture wherein each processor element is connected to its
immediate neighbours to the “north”, “south”, “east”, and “west”. A problem
with such limited connectivity is that any transiation operation (combination of
horizontal and vertical shifts) can only be implemented as a single processor
element step at a time. This is especially a problem for any algorithm that needs to
compute a single result that involves all data elements, such as determining the
maximum pixel value in an image. In a “four connected neighbourhood”
architecture as exemplified by U.S. patent No. 4,314,349, it takes at least R X C
operations to obtain such a value, where R is the number of rows in the processor
array and C is the number of columns in the processor array. The overall result is
that individual processor elements spend a lot of time idle while values propagate
through the rest of the array. A further problem with such limited connectivity is
that the array cannot readily process volumetric (three dimensional) image data
because the PEs cannot be reconfigured into a mesh representing a three
dimensional structure.
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It is also known to connect processor elements at a border of an array to
corresponding processor elements on the opposite border. U.S. patent No.
5,590,356 discloses an example of such a “torus” architecture. While improving the
efficiency of certain image operations, a torus architecture still does not help the
global evaluation problem, and it introduces long wiring paths (from one edge of
the array to another) that impose lower limits on the data transfer rate between
processor elements because of the propagation delays along these long paths.

Some architectures have a much higher degree of connectivity. For
example, U.S. patent No. 4,805,091, describes an array of processor elements
logically arranged at nodes of a many-dimensional hyper-cube and a message
routing system which permits each processor element to pass packets of data to
another processor element with few intervening steps. While it can achieve more
efficient processor utilization than the architectures described above, this type of
architecture is difficult to implement in a monolithic array. Long path propagation
delays adversely affect the scaleability of the system.

Large arrays of processors can often be made fault tolerant so that, if one or
more processors are defective, their functions can be assumed by spare processors.
There are a number examples of fault tolerant processor arrays in the academic and
patent literature including those disclosed in U.S. patent Nos. 4,314,349;
5,625,836; 5,590,356; 5,748,872; 5,956,274; and, 4,722,084. Fault tolerance in
memory arrays (e.g. as described by patents US6032264, and US5920515) has
proven very beneficial to reducing their price because fault tolerance greatly
increases the yield of operational chips. This is especially important because
memories are typically very high density, and so especially sensitive to defects. It is
much more difficult to provide a fault tolerant processor array than it is to provide a
fault tolerant memory array because the cells in a memory array do not need to
communicate with each other as do the processors in a processor array. So if a
defect in a memory array is avoided by replacing an entire row or column, it is not
necessary for the replacement row or column to be located physically adjacent to the
defect. However, in a processor array, any fault correction scheme must replace
the defective cell in such a way that all the local interconnections are implemented.

There is a need for cost effective computer systems capable of efficiently
handling multi-dimensional problems, such as image processing. There is a
particular need for such systems capable of handling streams of data, such as video
image data in real time. There is a particular need for such systems which are
scalable through a wide range of array sizes with a minimum of software or
hardware changes.
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Summary of the Invention

This invention provides arrays of processor elements which have advantages
over the prior art. One aspect of the invention provides a processor array
comprising a plurality of interconnected processor elements, a plurality of
instruction buses connected to each of the processor elements, at least one data bus
connected to each of the processor elements and a instruction selection switch
associated with each of the processor elements. Different processors in the array can
be performing instructions in different instruction streams. Each processor element
is connected to execute instructions from one of the plurality of instruction buses as
selected by its instruction selection switch.

In preferred embodiments each of the processing elements comprises an
instruction bus selection register and the instruction selection switch is constructed
to select a one of the plurality of instruction buses corresponding to a data value in
the instruction bus selection register. The contents of the instruction bus selection
register can be changed under software control.

Most preferably the array comprises a plurality of data buses connected to
each of the processor elements. A data selection switch associated with each of the
processor elements can be used to select one of the data buses. Each processor
element can be connected to receive data from a one of the plurality of data buses
selected by its data selection switch. The data buses are not necessarily associated
with any particular instruction stream.

In preferred embodiments, 1 wherein each of the processor elements is
connected to send data to and receive data from other processor elements in a
cruciate neighbourhood.

Another aspect of the invention provides a processor array comprising a
plurality of interconnected processor elements. ‘Each of the processor elements is
logically arranged at an intersection of a row and a column in a grid comprising a
plurality of rows and a plurality of columns. Each of the processor elements is
connected to transmit data to a plurality of neighbouring processor elements. The
plurality of neighbouring processor elements comprising a number N> 1 of
processor elements in the column on either side of the processor element and a
number M >1 of processor elements in the row on either side of the processor
element. In some embodiments N > 4 and M > 4. There may be different
numbers of neighbouring processor elements on either side of a processor element.

A further aspect of the invention provides a method for operating a
processor array comprising a plurality of processor elements. Each of the processor

_elements has a plurality of registers which require periodic refreshing at a refresh
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frequency. The method comprises providing one or more streams of instructions to
each of the processor elements for execution by the processor elements and,
periodically inserting into the one or more instruction streams register refresh
instructions, the register refresh instructions causing the processor elements to
rewrite data values in the registers. Preferably the processor element is left in the
same state after execution of a refresh instruction as it was before execution of the
refresh instruction. This permits refresh instructions to be inserted at any time, as
required.
A still further aspect of the invention provides a method for operating a
processor array having a plurality of interconnected processor elements. The method
comprises providing an array of processor elements, each of the processor elements
logically arranged at an intersection of a row and a column in a grid comprising a
plurality of rows and a plurality of columns. Each of the processor elements is
connected to transmit data to a plurality of neighbouring processor elements, the
plurality of neighbouring processor elements comprising a number N of processor
elements in the column on either side of the processor element and a number M of
processor elements in the row on either side of the processor element. The method
continues by determining when one or more of the processor elements is defective;
and, for each defective one of the processor elements, ignoring either the row or
column containing the defective one of the processor elements. The shape of the
neighbourhoods permits rows and/or columns to be ignored while preserving the
functionality of the processor array.

. A still further aspect of the invention provides a method for implementing a
table lookup operation in a processor array. The method comprises: providing a
processor anay comprising a plurality of processor elements; providing multiple
data streams to each processor element; providing a lookup table comprising several
parts each part corresponding to a range of values, each of the parts comprising one
or more table values; simultaneously transmitting the several parts of the lookup
table on the multiple data streams; at each processor element selecting a data stream
to access as a function of a data value in the processor element; and, at each
processor element retrieving from the selected data stream a table value
corresponding to the data value of the processor element.

Further features and advantages of the invention are described below.

Brief Description of the Drawings :
In figures which illustrate non-limiting embodiments of the invention:
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Figure 1 is a schematic view of a system including a processor array
according to the invention,;

Figure 2 is a block diagram of a processor element for use in the invention;

Figure 3 illustrates the local connectivity of a processor element in a
processor array according to a preferred embodiment of the invention;

Figure 4 illustrates an alteration in the local connectivity of the processor
array of Figure 3 to accommodate a defective processor element;

Figure 5 is a partial schematic block diagram illustrating the connection of
read and write edge registers to processor elements in a column of a processor array
according to a specific embodiment of the invention;

Figure 6 is a simplified schematic diagram illustrating a possible
construction for a neighbour access logic circuit for use in a processor element;

Figure 7 is a schematic diagram illustrating a possible construction for
removing defective processor elements from operation; and,

Figure 8 is a schematic diagram for a possible defect logic circuit.

List of Referen umeral

10 system 11  processor array
11A  area of array 12 processor element
13 ALU 14  instruction stream
15A row 15B column
16 data stream 17  broadcast stream
18 controller ' 19  memory
20 array program and data 21 register set
memory
21A  general purpose registers 21B control registers
22 instruction select register 23 data select register
24 write register 25  read register
26 DMA controller 27  iloclock
28 clock signal data path 29 control bus
30  row select line 32 /o register
33  video decoder 33A input video stream
34  memory 36  video encoder
37  instruction stream select switch 38  data stream select switch
40 processor element 41A -411  neighbouring processor

elements
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42A -421  neighbouring processor
elements
44A - 441  neighbouring processor
elements
46 local register
49  neighbour access logic
51 /o data line
53 status register
60 defective processor element
63 processor element
770A defect logic element section
72 column defect register
75A-75SH inputs .
77  broadcast input
78 broadcast enable/disable
register
90A - 90D sets of serial data lines
92A, 92B  specific data lines
Descriptio
L, _Overview

PCT/CA01/00712

43A -431  neighbouring processor
elements

45  neighbourhood

48  input selection logic
50  defect register

52  i/o dataline

55 edgei/obus

61, 62 row

70  defect logic element
7 row defect register
74  multiplexer
76A-76H outputs

T7A  defect signal input
90 set of serial data lines

92 data lines
93 switch

Figure 1 is a schematic view which illustrates the overall structure of a
system 10, according to a currently preferred embodiment of the invention. System
10 includes a processor array 11. Array 11 is preferably constructed on a single
integrated circuit. Array 11 comprises a large number of processor elements 12
arranged in a 2-dimensional topology. Each processor element 12 is logically
arranged at an intersection of a row 15A and a column 15B in a grid comprising a
plurality of rows and a plurality of columns. A typical array 11 for image
processing applications could have in excess of 10,000 processor elements 12. A
processor array according to the invention might, for example, have 19,200
processor elements 12 logically arranged in 160 rows and 120 columns. A processor
array according to the invention could also comprise a long narrow array. For
example, the array could have a number of columns equal to or slightly greater than
the number of pixels in a row of an image to be processed and a few rows, for
example 8 to 16 rows. Such an array might, for example, have 5760 processor
elements arranged in 720 columns and 8 rows. Preferably all of the processor
elements 12 of array 11 are fabricated on a single semiconductor wafer. Control
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signals such as system timing signals from a system clock (not shown) are provided
to processor elements 12 by way of a control bus 29 (Figure 2).

As is typical in SIMD architectures, instructions and data values are
broadcast to every processor element 12, However, in contrast to previous SIMD
architectures, array 11 provides multiple instruction streams 14 and multiple data
streams 16 which are simultaneously broadcast to every processor element 12. In a
currently preferred embodiment of the invention there are 16 broadcast streams,
indicated generally by the reference numeral 17, each of which may be used either
as an instruction stream 14 or as a data stream 16. Each broadcast stream is carried
by a suitable bus. In this specification the term “bus” has the broad meaning “a
signal route along which data signals can be passed”.

The operation of array 11 is coordinated by a controller 18. Controller 18
may comprise, for example, a conventional CPU (which could be a RSIC, CISC,
DSP, or VLIW architecture) running software instructions stored in a memory 19.
Controller 18 manages array 11 by causing appropriate broadcast streams 17 to be
delivered to processor elements 12 from an array program and data memory 20 and
coordinating direct memory access (DMA) operations of DMA controller 26 as
described below. Controller 18 could be integrated on a single chip with processor
elements 12 or could exist off-chip as a separate component. For video processing
applications system 10 preferably includes a video decoder 33 and a video encoder
36.

As described below, the incorporation of multiple broadcast streams 17
which can be configured to provide multiple data streams and multiple. instruction
streams makes it possible to perform certain operations, such as table look ups very
efficiently. Furthermore, The architecture of system 10 can be operated in certain
circumstances to provide reduced power consumption as compared to prior
architectures.

Prefe nstruction of essor Ele

As shown in Figure 2, each processor element 12 has a set of registers
indicated generally by 21. Some of registers 21 are general purpose registers 21A
which processor element 12 can use for storing data and the results of computations.
Other ones of registers 21 are control registers 21B which have special purposes.
Each processor element 12 has an instruction select register 22 (Fig. 2). The
contents of instruction select register 22 controls which one of broadcast streams 17
processor element 12 will look to for instructions to be executed on the processor
element 12. In the illustrated eml?odiment, an instruction stream select switch
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controlled by the value stored in register 22 selects instructions from one instruction
stream 14 and delivers the selected instructions to processor element 12. Each
processor element 12 also has a data select register 23. The contents of data select
register 23 controls which one of broadcast streams 17 will be looked to by the.
processor element for data. In the illustrated embodiment, a data stream select
switch 38, which is controlled by a value stored in register 23, can select data from
one data stream 16 and make data from the selected data stream available to
processor element 12,

Table I lists a possible complement of registers for a processor element 12
having 128 possible register addresses.

TABLE L.

ADDRESS DESCRIPTION

0-7 special purpose registers

8-15 control, status, instruction stream selection, data stream
selection etc.

16-31 general purpose registers

32-63 read only data streams (accessed in the same manner as
data in registers)

64-127 read only data from neighbouring processor elements
(accessed in the same manner as data in registers)

Registers 22 and 23 can be modified by processor element 12 under program
control. The instruction set for processor elements 12 includes instructions that
cause the processor element 12 to switch to a different instruction stream or to
switch to a different data stream. Switching to a different instruction stream can be
used, as described below, to achieve a function similar to that of a “jump”
instruction in a conventional serial processor. Switching to a particular data stream
can be used to enhance table look ups.

The specific implementation of a processor element 12 shown in Figure 2
has 16 general registers, each 16-bits wide. Each general purpose register can
conveniently store a colour pixel value, two 8-bit pixels, or the result of an 8-bit by
8-bit multiplication. Instructions are also typically 16-bits wide. The processor
elements are preferably individually very small so that a large array 11 can be
fabricated on a single chip using suitable VLSI fabrication techniques.

To maintain processor elements 12 small and closely packed, data paths
connecting to each processor element 12 and data paths within a processor element
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12 are preferably serial. In the preferred embodiment, all data and instructions are
shifted into and out of each processor element in bit serial fashion; all instruction
and data buses are 1-bit wide; and all arithmetic and logic operations are performed
in a bit serial manner.

Where data streams 16 are serial then processor elements 12 can read data
from any selected data stream 16 as if the data stream were a local register. The bits
from data stream 16 are read sequentially into a register in processor element 12. It
is not necessary to provide separate local buffers for storing data from data streams
16 so that it can be read by processor element 12. This can further reduce the size
and complexity of processor elements 12.

In the preferred embodiment of the invention, while processor element 12 is
executing one instruction, a next instruction is being read into processor element 12
from the currently active instruction stream 14. It is typically not possible to
commence performing an instruction until an entire instruction has been received.
Where processor element 12 operates serially it is, however, possible to operate on
data as it is received since, as noted above, reading data from a serial data stream
16 is not significantly different from reading the same data from a local serial
register. This makes it desirable to shift data streams 16 by one cycle relative to the
instruction streams 14 which contain instructions for operating on the data of data
streams 16. It is convenient to reserve one group of broadcast streams 17 for
instructions and another group of broadcast streams 17 for data.

Each processor element 12 has an ALU (arithmetic and logic unit) 13. In the
preferred embodiment ALU 13 is preferably a simple 2-bit to 1-bit ALU capable of
any 2:1 logic operation, addition, and subtraction. Multiplication can be achieved
through a sequence of operations involving addition and bit shifting. While such a
bit-serial implementation means that each processor element 12 runs approximately
17 times slower (for a 16-bit word length) than it could in a bit-parallel
implementation, the overall result of being able to pack more processor elements 12
into the same silicon area provides a fine-grained parallelism that is a more natural
fit to image related computation problems. Further, with a serial implementation it
is possible to connect each processor element 12 to more instruction streams, data
streams and neighbouring processor elements than would be practical using an
implementation in which instruction streams, data streams and connections to
.neighbouring processor elements were made using data paths which carry parallel
data. : ' '
A further benefit of using serial shift registers in processor elements 12 is
that the registers 21 can be implemented as dynamic memory rather than static
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memory. The serial execution process naturally refreshes the contents of any
registers used by an instruction. Dynamic registers can typically be implemented
with fewer transistors or other circuit elements per bit of storage than can static
registers. This permits further reduction in the area occupied by each processor
element 12. If registers 21 must be refreshed at a rate of a few KHz, at a 10 MHz
instruction rate, it is a small overhead (about 1%) to insert instructions in the
instruction streams which do nothing other than refresh the values in registers 21.
This approach avoids the need for any special refresh logic As a further refinement,
controller 18 could track the usage of registers in array 11 and insert refresh
instructions into instruction streams 14 on an as-needed basis. After execution of a
refresh instruction a processor element 12 should preferably be in the same state that
it was before execution of the refresh instruction so that refresh instructions can be
inserted at any point in an instruction stream without affecting any processes
running on the pfocessor element. '

A conventional memory, 34 such as DRAM or SRAM may be integrated
with array 11 for additional data image storage. This storage could be off chip, or
integrated on chip. As best shown in Figures 1, 2 and §, to provide input data to
processor array 11, (for example, to provide image data to array 11) and to retrieve
results computed by array 11, there is a set of “edge i/o” registers 24, 25. Registers
24 and 25 are controlled by a DMA (Direct Memory Access) controller 26. DMA
controller 26 can cause values from write registers 24 to be transferred into registers
in processor elements 12 in any selected row of array 11 by way of row select lines
30. Each processor element preferably has a register 32 reserved for such i/o
operations. DMA controller 26 can also refrieve data from registers 32 into registers
25. :

A preferred implementation has one register 24 (a write register) for
delivering data to a selected processing element 12 within each column of array 11
and one register 25 (a read register) for reuiéving data from a selected processor
element 12 in each column of array 11. To pass data into array 11, DMA Controller
26 first places into write registers 24 the data it wants to place into the array. This
data is fetched from any suitable memory accessible to DMA controller 26. For
example, the data may be in a local buffer memory 34, on another device or
network accessed via a communication bus 35 or data being received in an input
video stream 33. A next DMA Controller 26 selects a row of array 11 to which the
data in write registers 24 should be delivered by energizing one of row select lines
30. Then, in each column, data is shifted from write register 24 via i/o line 51 into
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the i/o register 32 of the processor element 12 in the selected row in time with a
clock signal.

Data already in the i/o register 32 of the processor element 12 is
simultaneously shifted via i/o line 52 to the read register 25 for that column. This
happens simultaneously for all columns of array 11. In this example, for each
column, write register 24, the i/o register 32 of a processor element 12 in the row
selected by DMA controller 26 and read register 25 can be considered to form a
single 48 bit shift register (16 bits x 3 registers) which is shifted by 16 bits during
the data exchange operation. If data in read registers 25 is of interest then DMA
controller 26 may copy the contents of read registers 25 to a suitable memory
device.

A clock signal is used to drive the shift operation. The clock signal is
preferably carried along a clock signal data path 28 which extends from near write
register 24, to the processor element 12 which is being written to and back down to
near read register 25. This ensures that the clock signal experiences very similar
propagation delays to the bits being transmitted. Rambus™ and other fast memory
devices use a similar construction. This makes array 11 fully scaleable (i.e. the
clock speed is not determined by the array size). The operation is completed when
read register 25 is shifted by 16 clock pulses. Array 11 preferably includes a
separate i/o clock 27 for regulating the i/o operations. This permits i/o operations to
be performed asynchronously with, and overlap with, the execution of instructions
by processor elements 12 as long as the instructions being executed do not read or
write to i/0 registers 32 while the data exchange operation is occurring. For
example the next image in a video sequence can be fed into array 11 as processor
elements 12 in.array 11 process a previous image. '

Row select lines 30, i/o lines 51 and 52 and i/o registers 32 constitute means
for selecting one row and means for simultaneously transferring data from each one
of the processor elements in a selected row into a corresponding read register. In
Figure 2, i/o lines 51 and 52 and i/o clock lines 28 are collectively indicated by the
reference numeral 55.

A separate set of edge i/o registers (not shown)_could be placed on the left or
right hand edge of array 11 for reading and writing data from selected columns of
array 11. In the alternative to reading and writing from an entire row of processor
elements 12 at the same time, array 11 could be constructed to have a random
access arrangement in which data is written to and/or read from with one specific
selected processor element 12 at a time.
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Input data for processing by array 11 could come from conventional
memory, or from some other device such as a scanner, a video feed, or a network
interface. Data output data from array 11 can be stored in any suitable memory
device or sent to another device such as a display or network interface.

In nnections of Processor Elemen edundanc

Figure 3 illustrates the interconnection of processor elements 12 within an
area 11A of array 11. Each square represents one processor element 12. Each
processor element 12 is connected to exchange data with a number of other
processing elements which are located close to it in array 11. Preferably each
processor element 12 is connected to a number N of adjacent processor elements
which are located on either side of the processor element in the same row as the
processor element and also to a number M of other processor elements which are
located on either side of the processor element in the same column as the processor
element. In the embodiment of Figure 3, N=M=9 and each processor element has
connections to 36 other processor elements. Implementations of the invention are
also possible in which processor elements 12 may be connected to a different
number of neighbouring processor elements in each direction.

Ilustrated processor element 40 is connected to processor elements 41A
through 411 which are on the same row as processor element 40 and to the right (as
viewed in Fig. 3). Processor element 40 is also connected to processor elements

'42A through 421 which are on the same row as processor element 40 and to the left.
Processor element 40 is also connected to processor elements 43A through 431
which are on the same column as processor element 40 and above processor element
40. Processor element 40 is also connected to processor elements 44A through 441
which are on the same column as processor element 40 and below processor element
40. The surrounding processor elements to which a processor element is connected
may be called “neighbouring” processor elements. The set of a processor element
12 and all of its neighbouring processor elements may be called a neighbourhood.

In Figure 3, the cruciate neighbourhood 45 of processor element 40 is outlined with
a thick line.

Each connection may be implemented by providing a register 46 (Fig. 2) in
each processor element and circuitry to broadcast the contents of register 46 to each
neighbouring processor element (e.g. for processor element 40, the contents of
register 46 are delivered to each of processor elements 41A through 441. Register
46 may be termed a “local” broadcast register because it makes a data value
available to other processor elements 12 in a local neighbourhood. The contents of
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register 46 can be made available to all neighbouring processor elements. Each -
processor element 12 therefore has 36 incoming data connections from neighbouring
processor elements. Preferably, to keep power consumption low, the contents of
register 46 are broadcast only upon request of any one of the neighbouring
processor elements which is connected to receive the contents of register 46. A
neighbouring processor element could request that the contents of register 46 be
broadcast, for example, by briefly applying a signal to the same bus on which the
contents of register 46 can be broadcast. If any one or more neighbouring processor
elements transmit such a data request signal then the circuitry broadcasts the
contents of local register 46 to the other processor elements in the neighbourhood.
The data lines by way of which the contents of local register 46 are broadcast to
neighbouring processor elements and the circuitry in processor element 12 which
drives such data lines constitute means for broadcasting the contents of register 46
to neighbouring processor elements.

In the embodiment of Figure 7, each processor element 12 broadcasts to
neighbouring processor elements 12, or not, depending upon a logic value stored in
a broadcast request generation register 78. Power consumption can be reduced by
setting broadcast request generation register 78 to inhibit broadcasting the contents
of local registers 46 except when processing instructions which require results from
other processor elements 12.

Each processor element 12 preferably has input selection logic 48, which
selects a data source for a read operation during any processor cycle. The data
source could be a selected one of the 36 neighbour processor elements or a different
data source, such as an incoming data stream or the like. Preferably each processor
element 12 includes a neighbour access logic unit 49 which selects data presented by
one neighbour in the neighbourhood of the processor element for possible access by
input selection logic 48.

Figures 2 and 6 illustrate one possible implementation of neighbour selection
logic 49. In the illustration of Figure 6, neighbour selection logic 49 connects to
sets of serial data lines 90. One set 90A of serial data lines connects to neighbouring
processor elements in the same column as, and above, each processor element 12.
Other sets 90B, 90C, 90D connect to neighbouring'processor elements in other
directions. Each set of data lines comprises a subset of data lines for carrying data
in each direction.

Figure 6 shows data lines 92 which are carrying data downwardly from
above to two neighbour selection logic units 49 of adjacent processor elements 12. 9
data lines 92 arrive at each neighbour selection logic unit 49. As can be seen in
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respect of the lowermost one of the two neighbour selection logic units of Figure 6,
one of the data lines 92A terminates at each neighbour selection logic unit 49. One
data line 92B originates at each neighbour selection logic 49. Data line 92B carries
the value in the “local” register of the associated processor element 12 to
neighbouring processor elements below.

Another set of data lines 92 (not shown) carry local data signals upwardly
from below in the same column. Further sets of data lines 92 (not shown) carry
local data signals from left-to-right and right-to-left on the same row.

A switch 93 contains a register 50. Logic in switch 93 causes one of the 9
incoming data lines 92 to be ignored in response to a value in register 50. Register
50 may, for example, be an 8 bit register. The logic value of each bit may
determine which of two of data lines is made available for selection by switch 93.
For example, the first bit may select between first and second ones of data lines 92,
a second bit may select between the second and a third one of data lines 92 and so
on. By inserting an appropriate byte value into register S0, 8 of incoming data lines
92 can be chosen. In response to the value in a data select register 23, switch 93 can
select one of the 8 available incoming data lines for input to processor element 12
via line 94. .

This architecture provides a number of advantages: it provides direct access
to a good number of local processor elements in the horizontal and vertical
directions of array 11, supporting many typical imaging operations and, it provides
indirect access (through two steps) to an even larger area without incurring the logic
and wiring overhead of a direct connection.

As described below, the architecture of Figure 3 can be used to provide a
simplified mechanism for dealing with any faulty processor elements 12. The use of
cruciate neighbourhoods, as illustrated in Figure 3, allows faulty processor elements
to be bypassed much more simply than could be the case for square
neighbourhoods. In the embodiment of Figure 3, it can be preferable to use only 32
connections to neighbours as active connections and to keep the remaining
connections to the most remote neighbouring processor elements for use as a
redundant back up as described below.

It can be appreciated that this local broadcast mechanism is contention free:
the sending processor element does not need to know which of its neighbour
processor elements requested data from its register 46. No processor element needs
to be able to directly write a value to a specific register outside itself. Further, the
interconnections of processor elements 12 are local in nature. Therefore, the size of
array 11 is not limited by the time it takes to broadcast a signal from one processor
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element to all others (as is the case for various forms of prior art arrays in which
individual processor elements have broadcast capability).

Where a processor element 12 is close to an edge of array 11 there may be
fewer than N (or M) neighbouring processor elements on one or more sides. For
such processor elements the data connections which, but for the intervening edge of
array 11, would connect to neighbouring processor elements beyond the edge of
array 11 may be connected to fixed data value (for example zero) so that when a
processor element close to the edge of array 11 requests data from one of these
locations the result is simply the value zero. Where array 11 has one dimension
much smaller than the other dimension then most, or even all, of processor elements
12 may be close to an edge of array 11. ‘

Alternatively, the data connections from processor elements 12 near the edge
of array 11 could be extended to external connections so that multiple arrays 11
could be combined to create larger arrays. For this latter approach to be
implemented it would be necessary to package array 11 in a manner capable of
providing the necessary data connections. One can appreciate that, when N is 8,
each processor element at the edge of an array 11 would require at least 8 external
connections. If array 11 is, for example, a 160 x 120 array then 4480 data
connections would be required for the peripheral processor elements alone. The
number of physical connections could be reduced by multiplexing several data
connections onto each physical connection.

In the preferred embodiment of the invention, array 11 is fabricated on a
single chip. Current fabrication techniques-are not perfect. If a large array 11 of
processor elements 12 is fabricated on a single chip then it is likely that a few of
processor elements 12 will be defective. The embodiment of the invention shown in
Figure 3 can accommodate such faults by effectively ignoring all processor elements
in a row or column of array 11 in which the faulty processor element 12 resides.

In this embodiment of the invention each processor element 12 has data
connections to a number of neighbouring processor elements in each direction in its
row and column. Figures 7 and 8 illustrate a preferred construction for
accommodating faulty processor elements 12. As shown in Figure 7, each processor
element 12 comprises a defect logic element 70. All of the defect logic elements in
each row in processor array 11 are connected to a row defect register 71. All of the
defect logic elements for each column in processor array 11 are connected to a
column defect register 72. Registers 71 and 72 normally contain a first logic value.
When a processor element 12 at the intersection of a row and column is found to be
defective, a second value is placed in the corresponding row and column defect
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registers 71 and 72. In response to the second logic value the defect logic elements
70 to cause processor elements 12 in the affected row and column to be ignored.

Figure 8 illustrates a possible construction for a defect logic element 70.
Each defect logic element 70 comprises four sections. Each section handles signals
arriving at the processor element 12 from a different direction along a row or
column. The two sections 70A which handle signals arriving in a row direction are
connected at least to the corresponding column defect register 72. The two sections
70A which handle signals arriving in a column direction are connected at least to
the corresponding row defect register 71. All sections 70A in a defect logic element
70 may be connected to both corresponding defect registers 71. For example, all
sections may be connected to receive a defect signal that presents the second logic
value if either or both of corresponding defect registers 71 and 72 hold the second
logic value and otherwise presents the first logic value..

Figure 8 illustrates one section 70A. Section 70A has a number of signal
inputs 75 and a number of signal outputs 76. Section 70A comprises a plurality of
two-way multiplexers 74. Each multiplexer 74 connects one of two input signals to
its output. Which signal is connected to the output depends upon the value in the
corresponding defect register.

If defect registers 71 or 72 indicate that either the row or column in which
the defect logic element 70 is located should be ignored, as indicated by a signal at
input 77A, then each section 70A simply connects an input 75 to a corresponding
output 76 so that signals pass through unaltered. If defect registers 71 and 72
indicate that the processor element 12 to which the defect logic element 70 -
corresponds should be active then section 70A connects an input 77 which receives
a broadcast signal from the processor element 12 to a first output 76A , discards any
signal at an input 75H from a farthest neighbour, and connects inputs 7SA through
75G to outputs 76B through 76H respectively.

In an alternative embodiment there are connections to each of the N closest
processor elements in the same column above and below the processor element.
Each processor element actually uses data connections only to N -1 of these
neighbouring processor elements. Each processor element also has connections to
each of the M closest processor elements in the same row to the-left and right of the
processor element. The processor element actually uses only M-I of these
connections. For example, in Figure 3, M=N=9 but each processor element 12
actually uses only 8 connections in each direction. Each processor element 12
comprises a defect register 50 which includes data which identifies a single row and
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a single column in each direction to ignore when receiving data from neighbouring
processor elements 12,

In a “healthy neighbourhood” in which there are no defects within the 17 X
17 node region centered on a processor element 40 the defect register is set so that
the most distant cells 411, 421, 431, and 441 are ignored. If a column within the 17
x 17 region needs to be ignored, defect register 50 contains data indicating the
column to be skipped over. Input selection unit 48 then causes the column in
question to be skipped over. Any broadcasts from processor elements 12 in the
skipped column are ignored. Processor elements 12 within a row can be ignored in
the same manner.

A map of which processor elements 12 are defective can be generated either
in production testing, or by way of a POST (Power on Self Test) routine which
executes when array 11 is started up. Software designed for locating defective
processor elements 12 would execute on array 11 and set the defect registers 50
appropriately. Array 11 is preferably fabricated with enough rows and columns of
processor elements 12 to accommodate a number of defects and still provide an
array having an effective size suitable for the task at hand. The particular rows and
columns of array 11 which should best be disabled to avoid a particular set of
defective processor elements 12 can be determined by applying a suitable algorithm.
For example, U.S. patent No. 4,751,656 assigned to IBM corporation describes one
possible algorithm for choosing the best combination of rows and columns in an
array to disable for the purpose of removing defective array elements. Figure 4
illustrates a portion of array 11 having a defective processor element 60. The row
61 containing the defective processor element has been disabled. Defect register 50
of processor element 40 has been set to ignore row 61 and to allow communication
with processor element 63 in row 62.

The foregoing arrangement permits the accommodation of defects in array
11 in a very simple manner. This arrangement cannot compensate for all possible
distributions of defective processor elements 12. To keep the defect logic simple (so
that it does not impact too significantly on the size of processor elements 12), only a
single row and single column can be deleted on any one side of any processor
element 12. If there are too many defective processbr elements 12 within a small
region of array 11 then it may not be possible to remove all of the defective
processor elements 12. .

Where it is not possible to remove all of the defective processor elements 12
in an array 11 there may be a rectangular region within array 11 in which it is
possible to compensate for all defective processor elements 12 as described above.

v s . t—— =t e cmm b se
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This rectangular region may be used as a smaller array 11. Thus chips which
incorporate processor arrays 11 according to the invention in which there are a
number of defective processor elements can still be used for tasks for which a
smaller working array area will suffice. Thus processor arrays according to the
invention can be made with a higher effective yield than would be the case if
processor arrays 11 which include defective processor elements 12 were suitable
only for scrap.

Since, in the preferred embodiment, processor elements only communicate
directly with other processor elements which are located physically close by, array
11 can be easily scaled. It is not necessary that a processor element 12 in one part of
array 11 be executing an instruction at exactly the same time as another processor
element 12 in a rémote part of array 11. All that is necessary is that the information
in broadcast instruction streams 14 and data streams 16 should take about the same
amount of time to reach any given processor element 12 from array program and
data memory 20 (or some other source(s) of instructions and data). |

Instruction Set .
The architecture described above can be used in many different contexts.

Processor elements 12 may be implemented in various ways. The following is an
example of an instruction set that may be implemented by processor elements 12.
The invention is not limited to this instruction set which balances simplicity (so that
the area of instruction decode logic is not too large), functionality, and efficient
execution of common operations.

In this example, the instructions operate on a 128 register space. Some of the
128 register slots in this register space are associated with physical data storage.
Others refer to read-only data streams and data from neighbouring processor
elements. One possible register mapping is as follows:

TABLE 11
Register(s) Description
0, rl General purpose registers “A” and “B”
2 local (broadcast to neighbours)
3 global (linked to edge i/o registers)
4 operand (right shift function, and byte swap capability via
operand2)
) o) operand2 (byte swapped representation of operand)
6 row (general reg., but typically stores row address of PE'




WO 01/90915 PCT/CA01/00712

-2 -
r7 col (general reg., but typically stores column address of PE)
r8 instrSel (3 bit instruction stream select)

9 dataSel (7 bit register address for data or neighbour
selection)

r10 status (6 bits of condition flags and state control flags)

rll defect (16 bit defect control register)

rl12 (r/o) DataStr (Data or neighbour stream selected by dataSel)

rl3, rl4 reserved for future use

rl5 (r/o) -1 (constant value for increment and decrement)

rl6 ... general registers (fewer than all of these may actually be

131 used)

32 ... broadcast data streams (fewer than all of these may actually

163 (r/0) be used)

ré4 ... data from neighbours (fewer than all of these may actually

r127 (r/o) be used)

(r/0) means “read only” in this Table

Providing a register, such as 5, which contains a byte-swapped
representation of an operand is particularly useful for packing and unpacking single
byte values into 16-bit registers (e.g. so that two 8-bit pixels can be easily stored in
an single register).

In this example, every instruction is a 16 bit value which has the structure:
< predicate > <operation > . The execution of the instruction is controlled by a set
of two predicate condition bits. The predicate bits select one of four execution
options based on the current settings of condition flags in the status register 53
(which have been set by an earlier result). Depending upon the value of the
predicate, the instruction will either: execute only if the condition flags indicate that
a previous result was less than zero; execute only if the condition flags indicate that
a previous result was equal to zero; execute only if the'condition flags indicate that
a previous result was greater than zero; or
always execute without regard to the settings of the condition flags. The use of a
predicate to control execution of instructions permits the efficient execution of short
conditional sequences for which the overhead of switching to a different stream is
not warranted or where the operation of switching to a different stream is itself
conditional.
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Cases where conditions need to be combined (e.g. where it is desired that
the instruction should execute if the previous result was either greater than or equal
to zero) can be accommodated by using one extra instruction (e.g. the extra
instruction could test the condition flags, if they indicate “greater than zero”, then
the instruction could set the condition flags with a 0 value. The next instruction
could then use a predicate which tests for “equal to zero”).

The operation portion of each instruction is 14 bits wide and has one of two
possible structures depending upon whether it specifies an operation to perform
using the contents of two registers or whether it Speciﬁes a value to write to a
register. For an operation which operates on the values on two registers the
structure of the <operation> field is:
<lhs> <rhs> <alu-op> <negate> <test>
Where:
<1lhs> is a2 bit value specifying one of three registers (A, B, or “local”);
<rhs> is a 7 bit value specifying any register;
<alu-op> is a 3 bit value defining the ALU operation to perform between lhs and
rhs (see Table IIT);
<negate> is a 1 bit field which, if set, causes the rhs value to be negated prior to
use in the ALU; and, <test> is a1 bit field which, if set, causes the result of the
ALU operation. that is returned to the lhs register to update the condition flags in the
status register.

For an instruction which loads a value into a register the <operation > field
has the structure <mark> <reg> <data>
where: <mark> is a two bit field that, indicates that this is a register loading
operation; <reg> is a 4 bit field which specifies any one of the first 16 registers
(10 ... r15); and <data >is an 8 bit field containing an immediate value to load
into the specified register. This instruction is preferably performed in a single
bit-parallel (latching) operation. This ensures that when the instrSel (instruction
stream select) register is the destination, the correct instruction stream is selected in
time to receive the next instruction on the selected instruction stream. If this control
register load operation where done in bit-serial fashion, the control register would
not be updated in time for the next instruction to be read in bit-serial manner from
the correct stream, in which case there would always need to be a single extra null
operation following an instruction stream switch to wait for the change to come into
effect. As noted elsewhere, for efficiency it is preferable that each processor
element is reading a next instruction while it is executing a current operation.
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The status register includes two “mode control” bits for control of left shift
and right shift operations. These mode control bits are useful for efficient
implementation of multiplication. The <rs> (right shift) mode control bit, if set,
causes register rl to be shifted right by one bit prior to each operation. The least
significant bit of the register is moved to the add-enable flag within the ALU, and
the most significant bit is sign extended (register rl is used to store one of the
operands for a multiplication operation). If the operation-enable bit of the ALU is
set, the operation is performed, otherwise no operation is performed. If the <rs>
field is 0, the operation-enable bit is always set to 1.

The <Is> (left shift) mode control bit, if set, causes the rhs result to be
shifted left by one bit after the operation has completed, the least significant bit
being set to 0.

Table III is an example of operations that may be performed by ALU 13.

TABLE III ALU OP CODES
oP OPERATION VALUE VALUE
CODE RETURNED TO | RETURNED TO
LHS RHS
0 no op (null operation)
1 AND lhs - lhs AND rhs~- rhs
ths'
OR lhs - lhs OR rhs' | rths - rhs
3 XOR lhs - l1hs XOR rths - rhs
| rhs'
4 add o lhs - lhs + rhs' rhs - rhs
B copy rhs' to lhs lhs - rhs' rhs - rhs
6 copy lhs to rhs Ihs - 1hs rhs - lhs
7 swap lhs and rhs’ Ihs - rhs' rhs ~ lhs
if the <negate> bit is set in the instruction, rhs' = -rhs, otherwise rhs' = rhs

Example 1 - Conditignal Branches
The architecture described above permits various paralle] data processing

operations which are not readily feasible with prior architectures. For example, with
an architecture which provides several concurrent instruction streams to processor
elements 12 conditional branches can be performed with enhanced efficiency. If we
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assume that initially all processor elements 12 in array 11 are receiving instructions
from a first instruction stream “stream 0”, and “InstrSel” is the name of the
instruction select register 22, then a pseudo code program which included a
conditional branch could be constructed as shown in Table IV.

TABLE IV
Stream 0: Stream 1:
if (ro # 0) then nop
InstrSel = 1; '
/* Sequence A */ /* Sequence B */
nop InstrSel = 0;

The first instruction in stream 0 causes any processor elements 12 with a
non-zero value in register r0 to switch to stream 1. The two different sequences,
sequence A and sequence B are then executed in parallel. After both sequences A
and B have been completed, the last instruction in stream 1 causes any processor
elements 12 executing instructions in stream 1 to switch back to stream 0. If one
sequence of instructions is shorter than the other, the processor elements 12 execut-
ing that stream can execute null operations (nop) while the processor elements 12
executing the other stream complete the other sequence.

Example 2 - Table Lookup
With an array 11 according to the invention which has both multiple instruc-

tion streams 14 and multiple data streams 16 a table lookup operation can be
executed in a reduced number of cycles. Further, each processor element can
retrieve a value from the table while performing fewer operations. This can result in
lower power consumption by array 11. In one approach a lookup table can be
divided into a number of approximately equal-sized blocks. Preferably the table is
divided into the same number of blocks as there are available data streams 16. Each
block might correspond, for example, to a data value within a certain range. Each
processor element 12 in array 11 has a register containing a data value to be looked
up in the table. Each processor element 12 performs instructions which cause it to
inspect the data value and to identify from the data value one of the blocks corre-
sponding to the data value. The processor elements 12 switch to monitoring a data
stream on which the selected block will be broadcast. The blocks are then broadcast
in parallel to the processor elements 12 on the multiple data streams 16. Each .
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processor element retains a value from the table which corresponds to the data value
being looked up.

As a simple example, array 11 has 4 instruction streams 14, and 4 data
streams 16 and each processor element 12 has a value in its rQ register which is an
index of the desired table element is in register r0 of each processor element 12.
The index is in the range 0 to 63 (the first element of the table has an index of 0, as
is common practice in programming languages such as C). Data in the selected data
stream is referred to as “DataStr”. The looked up value is stored in register r1. A
lookup in a table having 32 values could be implemented as shown in Tables V and
VI

TABLE V
Q Instruction Streams
= {0 1 2 3
1 dataSel=xr0
2 InstrSel=
ro>s2
3 ro=r0>>4 rO«=r0>>4 rO0=r0>>4 rO0=r0>>4
4 if (xr0=0)
then
rl=DataStr
5 decrement if (r0=0)
ro then
rl=DataStr
6 decrement if (ro0=0)
ro0 then
rle=DataStr
7 decrement if (ro=0) then
r0 rl<=DataStr
8 if (xr0=0) decrement r0
then
rl<DataStr
9 if (r0=0)
then
rl=DataStr
10 if (20=0)
then
rle=DataStr
11 if (ro0=0) then
rl<DataStr
12 InstrSel«=0 InstrSel=0 | InstrSel«<=0
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TABLE VI
Data Streams
®
1
2
3
4 Tb1 [0] Tbl [1] Tbl [2] Tbl (3]
5 Tb1 (4] Tbl (5] Tbl [6] Tbl[7]
6 Tb1 [8] Tbl [9] Tbl [11] Tbl [11]
7 Tbhl [12] Tbl [13] Tbl [14] Tbl [15]
8 Tb1 [16] Tbl {17] Tbl [18] Tbl [19]
9 Tb1l [20] Tbl [21] Tbl [22] Tbl [23]
11 | Tbl [24] Tbl [25] Tbl [26] Tbl [27]
11 | Tbl[28] Tbl [29] Tbl [30] Tb1 [31]
12
All processor elements 12 are initially executing instructions from instruction

stream 0. “dataSel” refers to the data stream selection register. The table values
(indicated using the indexing notation of “tbl[index]” are sent via the multiple data
streams 16. Blank entries in the tables are intended to represent null operations and
data values.

The first instruction places the index into the data source register dataSel.
Because the data source is only a 2 bit value, the effect is that bits 0 and 1 of the
index are used to set the data source register. The next instruction sets the
instruction stream. As for the data source register, the instruction source register is '
only 2-bits. So the effect of the second instruction is to place bits 2 and 3 of the
index into the instruction source register (rO> >2 indicates shifting r0 by two
places). :

The final preparatory step, which is performed by every processor element,
is to shift r0 by 4 places, thereby leaving r0 with the remaining bits of the index (in
this case only bit 4 is used as the index is a 5 bit value). This, combined with the
instruction stream selection, determines on which row processor element 12
accesses the desired table value and stores the table value in register rl.

After processor elements 12 have executed these preparatory steps then the
table is broadcast, as shown in Table III, in synchrony with the instruction cycles.
Because the size of the table is twice the product of instruction streams and data
streams (4 x 4 = 16, while the table is 32 elements), the table is effectively divided
into two 16 element blocks, and these two main blocks are further divided into 4
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sub-blocks (one per data stream). While the table is broadcast, those processor
elements 12 which are executing each instruction stream wait for one of two specific
cycles in which the apprdpriate table elements are being broadcast. For example as
shown in cycles 4 and 8, the processor elements 12 which are executing the
instructions of instruction stream O select data values from either the first set of
table values being broadcast or the 4™ set of table values being broadcast depending
on the value of the fifth bit of the index initially stored in register rO. When r0 is
zero, then the processor element 12 access the data stream selected in cycle 1 and
places the data value *data into register r1. The final instruction at cycle 12 returns
all processor elements to instruction stream O.

The overall result is that the time taken to apply the table look-up has been
reduced in proportion to the number of data streams (excluding set up and clean up
time which is a small overhead for large tables). This is a significant improvement
over conventional SIMD array architectures. It is also an improvement over serial
architectures, such as architectures using one or more RISC, CISC or VLIW
processors. This method reduces the amount of data that needs to be fetched from
the data memory of array controller 18 because each element of the array only needs
to be fetched a single time. It is straight forward to extend this to larger tables, and
to use more or fewer instruction streams or more or fewer data streams.

Processor elements 12 preferably comprise circuitry which uses very little
power when the processor element is executing a null operation (“NOP”). It can be
seen from inspecting Table II that each processor element is idle during
approximately one half of the processing cycles required for the table lookup
operation. In other architectures table lookup operations require much higher
processor utilization with a commensurate increase in energy consumption.

Example 3 - Matrix Operations
Certain matrix multiply operations (such as used for the discrete cosine

transform commonly used in image compressibn) require that different processor
elements perform calculations using different matrix coefficients based on their
position within a local matrix. In these cases the processor element needs to have its
own row and column position stored in its registers for use in choosing the
appropriate stream. Appropriate coefficients can be effectively delivered to the
different processor elements 12 by way of the multiple. data streams provided in
arrays according to preferred embodiments of the invention.
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Example 4 - Miscellaneous Image Processing Operations

Image processing operations whose behaviour changes near an image
boundary, as is common for area operations such as filtering, can easily switch
processor elements 12 responsible for processing boundary pixels to a different
instruction stream to implement their different behaviour. Different instruction
streams can also be used to make processor elements 12 responsible for processing
even rows of pixels in interlacing or de-interlacing operations perform differently
from those processor elements 12 responsible for processing odd rows of pixels.

Example 5 Blending Two Images
This simple example assumes that there are two 160 pixel x 120 pixel grey '

level images. Pixel values for a first one of the images are stored in register r16 of
each processor element in a 160 X 120 array of processor elements 12. Pixel values
for a second image are stored in register r17 of each processor element. The

_ objective is to place a blended result given by the formula (r16 + r17)/2 into a
register r18. r0 is used as a temporary register for the operation. A sequence of
instructions for execution on each of processor elements 12 which can accomplish
this result is shown in Table VII.

TABLE VII
INSTRUCTION COMMENTS
10 = rl16;
0 =10 + rl7;
operand = 10; put sum of r16 and rl17 in an operand register
which supports the right shift function
status = RSHIFT_ON; turn on right shift mode to divide by 2
status = 0; turn off right shift mode
r0 = operand; - get result
r18 = r0; put result in r18

This operation can be completed in seven instruction cycles for any size of array.

Example 6 Column Addition
This example begins with each processor element in an array 11 having 120

rows holding a pixel values for a grey scale image in a register r16. The objective is
to add up the pixel value in each column of array 11 and to place the result in a
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register r2 of processor elements 12 in row 0 of the array. A sequence of
instructions for execution on each of processor elements 12 which can accomplish
this objective is shown in Table VIII. In the syntax of this example, “on()”
identifies specific instruction streams which execute the given instruction. Other
instruction streams contain null operations. “par” followed by block containing
several different instructions means that the instructions in the block are each
provided in a separate instruction stream and execute in parallel. The first
instruction in the block is delivered in stream 0, the second instruction is delivered

in stream 1, and so on.

TABLE VIII
INSTRUCTION COMMENTS
local = r16; Make contents of register r16 available to neighbours
10 = row; Get row number of the processor element

instrSel = row;

Select instruction stream based on the lower 3-bits of the
row number '

on (0,2,4,6) local =
local + down[1];

Instruction streams for processor elements on “even” rows
cause the processor elements to add the value from the
processor element below them in their column to the value
in their “local” register

on (0,4) local =
focal + down[2];

Instruction streams for processor elements in every fourth
row cause the processor elements to add the value from the
processor element two below them in their column to the
value in their “local” register

on (0) local = local

Processor elements running instructions in stream 0 add

+ down[4]; the value from the processor element four below them in
their column to the value in their “local” register.

on (0) repeat(rows/8

-1) -

{

local = local + Every processor element running instructions in stream 0

down(8]; adds the value from the processor element four below in its

column to the value in its “local” register.
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par {on (0) local = | Switch unused PEs back to original instruction stream
local + down[8];on
(1to7) instrSel =
0; }

This example illustrates how the cruciate neighbourhood structure described
above can speed up operations involving summation over rows or columns of an
array. An array with only nearest neighbour access would require at least 120 cycles
to complete this operation. This example shows that the operation can be performed
in only 21 cycles in a system according to the invention. Processor elements which
are not required to perform a calculation in any given cycle preferably execute null
operations This does not change the result computed, but significantly reduces
power consumption.

Example 7 MPEG Pattern Match
An MPEG macro-block is a 16 x 16 pixel region of an image. This is the

size of the regions used for motion estimation.” A typical method for comparing one
region with another is called “sum of absolute difference”. The pixels in the two
regions are compared by taking the absolute difference between corresponding
pixels, and then summing this up to produce a match score. A low value indicates a
better match than a high value. The following code illustrates the comparison
process for an 8 x 8 region (it is common to first subsample the image by a factor of
2 for a faster initial search, and then refine that search).

The most time consuming portion of this task is the summation across all the
cells in the 8 x 8 region. The following example illustrates one way to perform
motion estimation in a system according to the invention. This example can achieve
a high level of utilization of processor elements 12 and completes one motion
estimation cycle in just 8 instruction cycles. '

A 8x9 block of processor elements 12 is used to process each 8 X8 region of
an image. One row of 8 processor elements 12 is used to perform final post-
processing work of row summation and minima test. The resulting motion
estimation vector ends up in the top left processor element of the block. Table VII
shows how 8 instruction streams, numbered O through 7 are allocated to the
processor elements in the 8 X9 block.
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TABLE L1LX

COLUMN== OJTL[21314151617
ROW
0 TT 7161715171617
1 ofojofofo]Jofofo
2 SI31313131313
3 2121212121212
2 31313131313 3
5 i
6 1 3131313131313
"7 212121202121 212
8 T(313131313(313

The pixel values for the reference block are in register r1 of processor elements 12.
The pixel values for the input block that is being tested for similarity with the
reference block are stored in registers 10. Each processor element is executing

instructions from the instruction stream identified in Table IX.

Table X shows a sequence of 8 instructions executed by each of the first four
instruction streams associated with the 8 x 8 block.

TABLE X

on (0..3) local = r0;

make input image pixel available to neighbours

par

{

on (1..3) local =
up[1];

shift input image down by one pixel

on (0) local = up[2];

processor elements in row 1 executing stream0 must skip
over row of post processing processor elements above

them
}
on (0..3)
{
r0 = local; save the new input pixel
local = local - rl compare against reference piXel and test
{7}
{ <07?} local = absolute value
-local;

}
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on (0..2) local = Now sum up the columns in the 8x8 region
local + down[1];

on (0,1) local =

local + down[2];

on (0) local = local | column sum now ready for pickup by post-procesing row
+ down[4];

Table XI lists a sequence of 8 instructions executed by processor elements in
the added post-processing row which are executing the last four instruction streams.

TABLE XI.
on (4..7) local Fetch result of last cycle from top of 8x8 block
= down[1];
on (4..6) local Continue summation along row
= local +
right[1];
on (4..5) local
= local +
right[2];
on (4)
{

local = local + | Finished summation
right[4];

r0 = min; Fetch current minimum

r0 = r0 - local | Compare new sum against min
{7 |
{>0?} min = If better, store new min
local;
{>0?} 11 = and store associated motion vector
shiftPosition;

}

It can be appreciated that in the currently preferred embodiment of the
invention, which is described above, there are enough registers 21 within each
processor element 12 to hold values for 16 8-bit pixels, with additional free registers
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to perform useful work on these image values. The result is that an entire 640x480
8-bit image can be held in array 11. Alternatively, significant portions of multiple
images can be held in the array at the same time (e.g. four 320x240 images or
sixteen 160x120 images). For applications such as pattern matching, this means that
the reference image can be kept in the array at all times, rather than needing to
repeatedly fetch it from memory. This results in significant image processing
performance improvements because it substantially reduces the overhead of fetching
and storing image data that is inherent in a serial processor architecture (e.g. RISC,
CISC, or VLIW).

As will be apparent to those skilled in the art in the light of the foregoing
disclosure, many alterations and modifications are possible in the practice of this
invention without departing from the spirit or scope thereof. For example, while the
data paths within array 11 have been described as serial data paths the architecture
of the invention could also be used with parallel data paths. Data paths 16 and
instruction paths 14 could be interchangeable.

While the logical values of flags or bits have been referred to herein as being
“1” or “0” to represent logical conditions of TRUE and FALSE respectively, any
distinct signals could be used to represent these logic levels.

While each instruction stream and each data stream may be carried on a
separate bus, it would be possible in some embodiments of the invention to
multiplex several data and/or instructions streams on a single bus.

For clarity, certain elements, such as power supplies, power connections,
some clock lines and the like, have been omitted from the above drawings and
description. Such elements are known to those skilled in the art and are therefore
not described herein. For sake of illustration only, power connections may be
provided to processor elements 12 by way of a power bus extending parallel to row
select lines 30.

Accordingly, the scope of the invention is to be construed in accordance with
the substance defined by the following claims.
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WHAT IS CLAIMED IS:

1. A processor array comprising a plurality of interconnected processor
elements, a plurality of instruction buses connected to each of the processor
elements, at least one data bus connected to each of the processor elements
and a instruction selection switch associated with each of the processor
clements, each processor element connected to execute instructions from a
one of the plurality of instruction buses selected by its instruction selection
switch.

2. The processor array of claim 1 wherein each of the processing elements
comprises an instruction bus selection register and the instruction selection
switch is constructed to select a one of the plurality of instruction buses
corresponding to a data value in the instruction bus selection register.

3. The processor array of claim 1 comprising a plurality of data buses
connected to each of the processor elements.

4. The processor array of claim 3 comprising a data selection switch associated
with each of the processor elements, each processor element connected to
receive data from a one of the plurality of data buses selected by its data
selection switch.

5. The processor array of claim 4 wherein each of the processing elements
comprises a data bus selection register and the data selection switch is
constructed to select a one of the plurality of data buses corresponding to a
data value in the data bus selection register.

6. The processor array of claim 1 wherein each of the processor elements is
connected to send data to other processor elements in a cruciate
neighbourhood.

7. The processor array of claim 1 wherein the processor elements are arranged

in a plurality of rows and a plurality of columns and each of the processor
elements has direct data connections to at least one other processor element
in the same row as the processor element and at least one other processor
element in the same column as the processor element.
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The processor array of claim 7 wherein each processor element has direct
data connections to a plurality of neighbouring processor elements on each
side of the processor element in the same row as the processor element and a
plurality of neighbouring processor elements on each side of the processor
element in the same column as the processor element.

The processor array of claim 6 wherein each of the processor elements
comprises a local register and the processor element is connected to
broadcast data in the local register simultaneously to other processor
elements in the cruciate neighbourhood.

The processor array of claim 9 wherein each of the processor elements
comprises a circuit connected to receive a data request signal indicating that
at least one other processor element in the neighbourhood has requested that
the contents of the register be broadcast and the circuit is adapted to
broadcast the contents of the register only if a data request signal has been
received.

The processor array of claim 9 comprising a broadcast request generation
register connected to each of the processor elements, wherein broadcasting
the contents of the register is inhibited when the broadcast request generation
register contains a first logic value.

The processor array of claim 6 wherein each of the processor elements
comprises a register and selection logic the selection logic configured to
receive data from a particular one of the other processor elements in the
cruciate neighbourhood as determined by a value in the register.

The processor array of claim 6 wherein the cruciate neighbourhoods each
comprise four arms radiating from a processor element and each arm
comprises at least two processor elements.

The processor array of any one of claims 1-13 wherein a ratio of the number
of processor elements in the processor array to the number of instruction
buses in the processor array is greater than 100:1.
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The processor array of any one of claims 1-13 wherein a ratio of the number
of processor elements in the processor array to the number of instruction
buses in the processor array is greater than 1000:1.

The processor array of any one of claims 1-15 wherein the data buses
comprise serial data buses.

The processor array of any one of claims 1-16 wherein the instruction buses
comprise serial instruction buses.

The processor array of claim 1 comprising a plurality of data streams
connected to each of the processor elements.

The processor array of any one of claims 1 to 18 packaged on a single
integrated circuit.

The processor array of any one of claims 1 to 19 wherein the processor array
comprises at least 10,000 of the processor elements.

The processor array of claim 1 wherein each of the processor elements is
located at a node of a grid comprising a plurality of rows and a plurality of
columns.

The processor array of any one of claims 1 to 21 wherein each of the
processor elements comprises a plurality of registers of a type which require
dynamic refreshing.

A processor array comprising a plurality of interconnected processor
elements, each of the processor elements logically arranged at an intersection
of a row and a column in a grid comprising a plurality of rows and a
plurality of columns, each of the processor elements connected to transmit
data to other processor elements in a neighbourhood comprising a plurality
of neighbouring processor elements, the plurality of neighbouring processor
elements comprising a number N> 1 of processor elements in the column on
either side of the processor element and a number M > 1 of processor
elements in the row on either side of the processor element.
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The processor array of claim 23 wherein N 2 4 and M2 4.

The processor array of claim 23 wherein M = N = 2°, wherein n is an
integer and n >1.

The processor array of claim 25 wherein N >8 and M>8.

The processor array of claim 23 wherein the neighbourhood comprises a first
number of neighbouring processor elements in the column on a first side of
the processor element and a second number of processor elements in the
column on a second side of the processor element.

The processor array of claim 23 wherein each of the processor elements
comprises a register and selection logic the selection logic configured to
receive data from a particular one of the other processor elements in the
neighbourhood as determined by the value in the register.

The processor array of claim 23 wherein each of the processor elements
comprises a plurality of registers of a type which require dynamic

-refreshing.

The processor array of claim 23 wherein one or more instruction buses are
connected to deliver a plurality of instruction streams from an instruction
source to each of the processor elements, one or more data buses are
connected to deliver at least one data stream from a data source to each of
the processor elements and one or more clock buses are connected to deliver
a clock signal from a clock to each of the processor elements, wherein, for
each of the processor elements, propagation times to the processor element
from the data source on the one or more data buses, from the instruction
source on the one or more instruction buses and from the clock on the one or
more clock buses are substantially the same.

The processor array of claim 23 wherein each of the processor elements
comprises an i/o register and the array comprises a set of read registers, the
read registers comprising one read register for each of the columns, a first
i/o data line connecting each i/o register to a corresponding read register;
and, row select logic connected to select all of the processor elements in one



WO 01/90915

32.

33.

34.

35.

36.

37.

38.

PCT/CA01/00712

-39 -

of the rows, wherein, when one of the rows is selected, data from i/o
registers of processor elements in the selected row is written to the
corresponding read registers by way of the first i/o data lines.

The processor array of claim 31 comprising an output system clock and
circuitry for moving data from the i/o registers to the read registers in time
with a clock signal generated by the output system clock.

The processor array of claim 32 wherein the processor array comprises a
processor timing clock, which is separate from the output system clock, the
processor timing clock providing a clock signal to each of the processor
elements.

The processor array of claim 32 comprising a plurality of write registers, the
write registers comprising one write register for each of the columns, and a
second i/o0 data line connecting each i/o register to a corresponding write
register.

The processor array of claim 34 wherein the first and second i/o data lines
are serial data lines and the processor array is configured to bitwise shift a
value from a write register to the i/o register of a corresponding processor
element in a selected row and to simultaneously bitwise shift a value from
the i/o register of the corresponding processor element to the corresponding
read register.

The processor array of claim 23 wherein each of the processor elements
comprises means for simultaneously broadcasting the contents of a local
register to all other processor elements in the neighbourhood.

The processor array of claim 23 comprising a plurality of read registers, one
read register corresponding to each of the columns, means for selecting one
of the rows and means for simultaneously transferring data from each one of
the processor elements in a selected row into a corresponding read register.

A method for operating processor array comprising a plurality of processor

elements, each of the processor elements comprising a plurality of registers,
each of the plurality of registers in each of the processor elements
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comprising registers which require dynamic refreshing at a refresh

frequency, the method comprising:

a)

b)

providing one or more streams of instructions to each of the
processor elements for execution by the processor elements; and,
periodically inserting into the one or more instruction streams register
refresh instructions, the register refresh instructions causing the
processor elements to rewrite data values in the registers.

A method for operating a processor array having a plurality of
interconnected processor elements, the method comprising:

a)

b)

providing an array of processor elements, each of the processor
elements logically arranged at an intersection of a row and a column
in a grid comprising a plurality of rows and a plurality of columns,
each of the processor elements connected to transmit data to a
plurality of neighbouring processor élements, the plurality of
neighbouring processor elements comprising a number N of
processor elements in the column on either side of the processor
element and a number M of processor elements in the row on either
side of the processor element;

determining when one or more of the processor elements is defective;
and,

for each defective one of the processor elements, configuring the
array to ignore the row and column containing the defective one of
the processor elements.

A method for implementing a table lookup operation in a processor array,

the method comprising:

a) providing a processor array comprising a plurality of processor
elements;

b) providing multiple data streams to each processor element;

) providing a lookup table comprising several parts each part
corresponding to a range of values, each of the parts comprising one
or more table values;

d) simultaneously transmitting the several parts of the lookup table on
the multiple data streams;

e) at each processor element selecting a data stream to access as a

function of a data value in the processor element; and,
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f) at each processor element retrieving from the selected data stream a
table value corresponding to the data value of the processor element.
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